#include #include "src/Lanes.h" #include const int Lane1Pin = 9; //Output Channel 1 const int Lane2Pin = 10; //Output Channel 2 const int Lane3Pin = 11; //Output Channel 3 const int Enc1P1 = 2; //Encoder 1 Pin 1 to Interrupt const int Enc2P1 = 3; //Encoder 2 Pin 1 to Interrupt const int Enc1P2 = 14; //Encoder 1 Pin 2 to non-Interrupting pin because we only have 2 const int Enc2P2 = 15; //Encoder 2 Pin 2 to non-Interrupting pin because we only have 2 const int Enc1Btn = 16; //Encoder 1 Button const int Enc2Btn = 17; //Encoder 2 Button const int ClockIn = 4; //Clock In const int ClockDetect = 7; //Detect clock jack const int DebounceTime = 10; //Debounce time in ms Encoder LeftEnc( Enc1P1, Enc1P2); Encoder RightEnc( Enc2P1, Enc2P2); int E1 = 0; int E2 = 0; bool E1Btn = false; bool E2Btn = false; bool ClockState = false; bool E1Prev, E2Prev, CDPrev, E1Click, E2Click, CDIn = false; unsigned int E1Bounce, E2Bounce, CDBounce = 0; unsigned long ClockPrev = 0; byte Input = 0; int PpQN = 24; float Clock = 120; float ClockTick = (1/((Clock * PpQN)/60)) * 1000; unsigned long ClockTime = 0; unsigned long LastStepTime = 0; long EncLeft, EncRight = 0; long Lane1Pos, Lane2Pos, Lane3Pos, Lane1Time, Lane2Time, Lane3Time = 0; //Lanes are 4 dimensions 0 = Step Time, 1 = Step Voltage, 2 = Curve type (Linear, Expo, Log, Sine, etc) 3 = Curve Parameter. int Lane1[4][16]; int Lane2[4][16]; int Lane3[4][16]; void setup() { //Open Serial for output prior to installing a screen Serial.begin( 115200 ); Serial.println("Env Gen"); randomSeed(analogRead(A7)); pinMode(Enc1Btn, INPUT_PULLUP); pinMode(Enc2Btn, INPUT_PULLUP); pinMode(ClockIn, INPUT); pinMode(ClockDetect, INPUT_PULLUP); E1Btn = digitalRead(Enc1Btn); E1Prev = E1Btn; E2Btn = digitalRead(Enc2Btn); E2Prev = E2Btn; ClockState = digitalRead(ClockIn); CDPrev = digitalRead(ClockDetect); //Initialize the Lanes for(int i = 0; i < 16; i++){ Lane1[0][i] = random(0, 96); Lane1[1][i] = random(0, 255); Lane1[2][i] = random(0, 2); Lane1[3][i] = random(0,255); Lane2[0][i] = random(0, 96); Lane2[1][i] = random(0, 255); Lane2[2][i] = random(0, 2); Lane2[3][i] = random(0,255); Lane3[0][i] = random(0, 96); Lane3[1][i] = random(0, 255); Lane3[2][i] = random(0, 2); Lane3[3][i] = random(0,255); } analogWrite( Lane1Pin, Lane1[1][0]); analogWrite( Lane2Pin, Lane2[1][0]); analogWrite( Lane3Pin, Lane3[1][0]); // Timer0 is already used for millis() - we'll just interrupt somewhere // in the middle and call the "Compare A" function below OCR0A = 0xAF; TIMSK0 |= _BV(OCIE0A); } void loop() { long newLEnc = LeftEnc.read(); long newREnc = RightEnc.read(); if (digitalRead(Enc1Btn) != E1Btn){ if (E1Bounce == 0 & E1Click == false){ Serial.println("E1Btn State Change"); E1Btn = !E1Btn; E1Bounce = DebounceTime; E1Click = true; } } if (digitalRead(Enc2Btn) != E2Btn){ if (E2Bounce == 0 & E2Click == false){ Serial.println("E2Btn State Change"); E2Btn = !E2Btn; E2Bounce = DebounceTime; E1Click = true; } } bool newCD = digitalRead(ClockDetect); if (newCD != CDPrev){ if (CDBounce == 0){ Serial.println("Clock Jack Status Change"); CDPrev = CDIn = newCD; CDBounce = DebounceTime << 4; } } if ( digitalRead(ClockIn) != ClockState){ ClockState = !ClockState; if (ClockState){ unsigned long tmpClock = micros(); float clkInTick = tmpClock - ClockPrev; float newBPM = ((1.0/(clkInTick/1000000.0)) * 60.0)/(float)PpQN; ClockPrev = tmpClock; if (abs(Clock - newBPM) > 0.5){ Clock = newBPM; String outputBPM = "New BPM: "; outputBPM.concat(newBPM); Serial.println(outputBPM); outputBPM = "Clock Tick: "; outputBPM.concat(clkInTick); Serial.println(outputBPM); ClockTick = (1/((Clock * PpQN)/60)) * 1000; } } } if (newLEnc != EncLeft || newREnc != EncRight){ String output = "Left Enc Pos: "; output.concat(newLEnc); output.concat( ", Right Enc Pos: "); output.concat(newREnc); Serial.print(output); if (newLEnc != EncLeft){ Clock = Clock + (((float)EncLeft - (float)newLEnc)/40.0); } else{ Clock = Clock + ((EncRight - newREnc) * 2.5); } ClockTick = (1/((Clock * PpQN)/60)) * 1000; EncLeft = newLEnc; EncRight = newREnc; output = " Clock: "; output.concat(Clock); output.concat( " Clocktick: "); output.concat( ClockTick); Serial.println(output); } unsigned long currentTime = millis(); if ((currentTime - LastStepTime) > ClockTick){ ClockTime++; LastStepTime = currentTime; } if ((ClockTime - Lane1Time) > Lane1[0][Lane1Pos]){ Lane1Pos = (Lane1Pos + 1) & B00001111; Lane1Time = ClockTime; analogWrite(Lane1Pin, Lane1[1][Lane1Pos]); } if ((ClockTime - Lane2Time) > Lane2[0][Lane2Pos]){ Lane2Pos = (Lane2Pos + 1) & B00001111; Lane2Time = ClockTime; analogWrite(Lane2Pin, Lane2[1][Lane2Pos]); } if ((ClockTime - Lane3Time) > Lane3[0][Lane3Pos]){ Lane3Pos = (Lane3Pos + 1) & B00001111; Lane3Time = ClockTime; analogWrite(Lane3Pin, Lane3[1][Lane3Pos]); } } // Interrupt is called once a millisecond, SIGNAL(TIMER0_COMPA_vect) { E1Bounce = (E1Bounce - 1) & 0b10000000; E2Bounce = (E2Bounce - 1) & 0b10000000; CDBounce = (CDBounce - 1) & 0b10000000; }