trigor_mortse/Lanes.ino

205 lines
5.7 KiB
C++

#include <Encoder.h>
#include "src/Lanes.h"
#include <Arduino.h>
const int Lane1Pin = 9; //Output Channel 1
const int Lane2Pin = 10; //Output Channel 2
const int Lane3Pin = 11; //Output Channel 3
const int Enc1P1 = 2; //Encoder 1 Pin 1 to Interrupt
const int Enc2P1 = 3; //Encoder 2 Pin 1 to Interrupt
const int Enc1P2 = 14; //Encoder 1 Pin 2 to non-Interrupting pin because we only have 2
const int Enc2P2 = 15; //Encoder 2 Pin 2 to non-Interrupting pin because we only have 2
const int Enc1Btn = 16; //Encoder 1 Button
const int Enc2Btn = 17; //Encoder 2 Button
const int ClockIn = 4; //Clock In
const int ClockDetect = 7; //Detect clock jack
const int DebounceTime = 10; //Debounce time in ms
Encoder LeftEnc( Enc1P1, Enc1P2);
Encoder RightEnc( Enc2P1, Enc2P2);
Lane LaneObject(Lane1Pin);
int E1 = 0;
int E2 = 0;
bool E1Btn = false;
bool E2Btn = false;
bool ClockState = false;
bool E1Prev, E2Prev, CDPrev, E1Click, E2Click, CDIn = false;
unsigned int E1Bounce, E2Bounce, CDBounce = 0;
unsigned long ClockPrev = 0;
byte Input = 0;
int PpQN = 24;
float Clock = 120;
float ClockTick = (1/((Clock * PpQN)/60)) * 1000;
unsigned long ClockTime = 0;
unsigned long LastStepTime = 0;
long EncLeft, EncRight = 0;
long Lane1Pos, Lane2Pos, Lane3Pos, Lane1Time, Lane2Time, Lane3Time = 0;
//Lanes are 4 dimensions 0 = Step Time, 1 = Step Voltage, 2 = Curve type (Linear, Expo, Log, Sine, etc) 3 = Curve Parameter.
int Lane1[4][16];
int Lane2[4][16];
int Lane3[4][16];
void setup() {
//Open Serial for output prior to installing a screen
Serial.begin( 115200 );
Serial.println("Env Gen");
randomSeed(analogRead(A7));
pinMode(Enc1Btn, INPUT_PULLUP);
pinMode(Enc2Btn, INPUT_PULLUP);
pinMode(ClockIn, INPUT);
pinMode(ClockDetect, INPUT_PULLUP);
E1Btn = digitalRead(Enc1Btn);
E1Prev = E1Btn;
E2Btn = digitalRead(Enc2Btn);
E2Prev = E2Btn;
ClockState = digitalRead(ClockIn);
CDPrev = digitalRead(ClockDetect);
//Initialize the Lanes
for(int i = 0; i < 16; i++){
Lane1[0][i] = random(0, 96);
Lane1[1][i] = random(0, 255);
Lane1[2][i] = random(0, 2);
Lane1[3][i] = random(0,255);
Lane2[0][i] = random(0, 96);
Lane2[1][i] = random(0, 255);
Lane2[2][i] = random(0, 2);
Lane2[3][i] = random(0,255);
Lane3[0][i] = random(0, 96);
Lane3[1][i] = random(0, 255);
Lane3[2][i] = random(0, 2);
Lane3[3][i] = random(0,255);
}
analogWrite( Lane1Pin, Lane1[1][0]);
analogWrite( Lane2Pin, Lane2[1][0]);
analogWrite( Lane3Pin, Lane3[1][0]);
// Timer0 is already used for millis() - we'll just interrupt somewhere
// in the middle and call the "Compare A" function below
OCR0A = 0xAF;
TIMSK0 |= _BV(OCIE0A);
}
void loop() {
long newLEnc = LeftEnc.read();
long newREnc = RightEnc.read();
if (digitalRead(Enc1Btn) != E1Btn){
if (E1Bounce == 0 & E1Click == false){
Serial.println("E1Btn State Change");
E1Btn = !E1Btn;
E1Bounce = DebounceTime;
E1Click = true;
}
}
if (digitalRead(Enc2Btn) != E2Btn){
if (E2Bounce == 0 & E2Click == false){
Serial.println("E2Btn State Change");
E2Btn = !E2Btn;
E2Bounce = DebounceTime;
E2Click = true;
}
}
//false click handler
E1Click = false;
E2Click = false;
bool newCD = digitalRead(ClockDetect);
if (newCD != CDPrev){
if (CDBounce == 0){
Serial.println("Clock Jack Status Change");
CDPrev = CDIn = newCD;
CDBounce = DebounceTime << 4;
}
}
if ( digitalRead(ClockIn) != ClockState){
ClockState = !ClockState;
if (ClockState){
unsigned long tmpClock = micros();
float clkInTick = tmpClock - ClockPrev;
float newBPM = ((1.0/(clkInTick/1000000.0)) * 60.0)/(float)PpQN;
ClockPrev = tmpClock;
if (abs(Clock - newBPM) > 0.5){
Clock = newBPM;
String outputBPM = "New BPM: ";
outputBPM.concat(newBPM);
Serial.println(outputBPM);
outputBPM = "Clock Tick: ";
outputBPM.concat(clkInTick);
Serial.println(outputBPM);
ClockTick = (1/((Clock * PpQN)/60)) * 1000;
}
}
}
if (newLEnc != EncLeft || newREnc != EncRight){
String output = "Left Enc Pos: ";
output.concat(newLEnc);
output.concat( ", Right Enc Pos: ");
output.concat(newREnc);
Serial.print(output);
if (newLEnc != EncLeft){
Clock = Clock + (((float)EncLeft - (float)newLEnc)/40.0);
} else{
Clock = Clock + ((EncRight - newREnc) * 2.5);
}
ClockTick = (1/((Clock * PpQN)/60)) * 1000;
EncLeft = newLEnc;
EncRight = newREnc;
output = " Clock: ";
output.concat(Clock);
output.concat( " Clocktick: ");
output.concat( ClockTick);
Serial.println(output);
}
unsigned long currentTime = millis();
if ((currentTime - LastStepTime) > ClockTick){
ClockTime++;
LastStepTime = currentTime;
}
if ((ClockTime - Lane1Time) > Lane1[0][Lane1Pos]){
Lane1Pos = (Lane1Pos + 1) & B00001111;
Lane1Time = ClockTime;
analogWrite(Lane1Pin, Lane1[1][Lane1Pos]);
}
if ((ClockTime - Lane2Time) > Lane2[0][Lane2Pos]){
Lane2Pos = (Lane2Pos + 1) & B00001111;
Lane2Time = ClockTime;
analogWrite(Lane2Pin, Lane2[1][Lane2Pos]);
}
if ((ClockTime - Lane3Time) > Lane3[0][Lane3Pos]){
Lane3Pos = (Lane3Pos + 1) & B00001111;
Lane3Time = ClockTime;
analogWrite(Lane3Pin, Lane3[1][Lane3Pos]);
}
}
// Interrupt is called once a millisecond,
SIGNAL(TIMER0_COMPA_vect)
{
E1Bounce = (E1Bounce - 1) & 0b10000000;
E2Bounce = (E2Bounce - 1) & 0b10000000;
CDBounce = (CDBounce - 1) & 0b10000000;
}